Tetrahedron 65 (2009) 7372–7379

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00404020)

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Virginie Bernat^a, Nathalie Saffon ^b, Marjorie Maynadier ^c, Henri Vial ^c, Christiane André-Barrès ^{a,}*

a Laboratoire de Synthèse et de Physicochimie de Molécules d'Intérêt Biologique, UMR CNRS 5068, Université Paul-Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France ^b Structure Fédérative Toulousaine en Chimie Moléculaire, FR 2599, Université Paul-Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France ^cDynamique des Interactions Membranaires Normales et Pathologiques, UMR CNRS 5235, Université Montpellier 2, cc107, Place E. Bataillon, F-34095 Montpellier cedex 5, France

article info

Article history: Received 12 May 2009 Received in revised form 7 July 2009 Accepted 9 July 2009 Available online 14 July 2009

ABSTRACT

Endoperoxides belonging to the G-factor family, containing a spiroalkane moiety in the α position to the O–O bond, have been synthesized via an autoxidation reaction on the corresponding dienol precursors. Methylated derivatives in the peroxyhemiketal position have also been prepared. The in vitro antimalarial activities are reported. Fe(II)-induced reduction on endoperoxides 8 and 9 have been studied. - 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Malaria is a major health problem in tropical and subtropical regions, causing more than one million deaths each year. Since malaria parasites are developing resistance to drugs such as chloroquine, new antiparasitic drugs are urgently required at an affordable price.^{[1](#page-7-0)} The search for a new generation of artemisinin-based therapeutics is being pursued.^{[2](#page-7-0)} Synthetic peroxide-containing compounds such as $1,2,4$ $1,2,4$ -trioxanes, $3,1,2,4$ -trioxolanes, 4 cyclic peroxyketals,^{[5](#page-7-0)} and endoperoxides⁶ have also been developed targeting Plasmodium falciparum.

We are interested in antimalarial agents acting in the same way as artemisinin and we focused on the synthesis of new endoperoxides, related to the natural phytohormones known as G-factors (G1, G2, G3)^{[7](#page-7-0)} (Fig. 1). These natural bicyclic endoperoxides contribute to frost and hydric stress resistance in Eucalyptus and Myrtaceae species. Some of the previously synthesized compounds present moderate to potent antimalarial activity.^{[8](#page-7-0)}

Alkylation of the peroxyhemiketal function proved to be crucial for activity.^{[9](#page-7-0)} Benzyl ether analogues (G3Bn) exhibited the highest

Figure 1. G-factors and functionalized endoperoxides.

0040-4020/\$ – see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.07.030

activities (IC_{50} =300 and 100 nM on chloroquine sensitive and resistant strains of P. falciparum, respectively). Both enantiomers displayed similar activity, which was approximately three-fold better than the methylated ether analogue. Studies concerning Fe(II)-induced reduction of the O–O bond¹⁰ revealed that, after a single electron transfer from Fe(II) to the O–O bond, the homolytic cleavage of the peroxidic function led in majority to the products following route (a). Thus, after formation of the O1 centered radical, it quickly rearranges to tertiary gem dimethyl C-centered radical (Scheme 1). This tertiary radical evolves differently depending alkylation or substitution of the peroxyhemiketal function.

Tetrahedror

In our search for new antimalarial endoperoxides related to the G-factor family, we decided to prepare a-spiro endoperoxides in

Scheme 1. Hypothesis of Fe(II)-induced reduction on spiro-endoperoxides.

^{*} Corresponding author. Tel.: $+33$ 05 61 55 68 09; fax: $+33$ 05 61 55 82 55. E-mail address: candre@chimie.ups-tlse.fr (C. André-Barrès).

order to explore the possibility of Fe(II)-induced reduction leading to homolytic cleavage of the peroxo linkage following the competitive route (b). The O2-centered radical may then be formed and rearranged to the primary C-centered radical, either via β -scission or via a secondary C-centered radical followed by a 1,5-H shift ([Scheme 1\)](#page-0-0). In this respect, we were first interested in synthesis of an a-cyclopropyl endoperoxide derivative, which should furnish a primary C-centered radical after Fe(II) induced reduction. Variation of the ring size and use of more elaborated aldehydes, such as norbornene-carboxaldehyde, or protected glyceraldehyde to form an epoxide in α -position of O–O bond, was also considered. The expeditious synthetic strategy planned to prepare these target compounds was based on autoxidation as the key step. We previously showed that spontaneous oxygen uptake proceeded via addition of ${}^{3}O_{2}$ on the dienol, thereby yielding a triplet biradical intermediate characterized by EPR.¹¹ This work concerns synthesis of such endoperoxides following this methodology, $⁷$ $⁷$ $⁷$ synthesis of</sup> their methylated analogues, and evaluation of their antiplasmodial activities.

2. Results and discussion

Synthesis of 2-alkylidene cyclo-1,3,5-trione precursors was achieved by a Knoevenagel-type reaction. They were prepared, as previously described, $⁷$ $⁷$ $⁷$ via their Mannich bases to minimize Michael</sup> bis-adduct formation. Mannich bases were easily obtained by addition of iminium salts, formed by reaction of piperidine with various aldehydes, on syncarpic acid (1). Then, acidic treatment led to precursors (2–5), which were subsequently submitted to autoxidation (Scheme 2).

Scheme 2. Synthetic route to α -spiro-alkane-endoperoxides.

2.1. From cycloalkane-carboxaldehydes

Unfortunately, in the case of the cyclopropane-derivative, an endoperoxide could not be obtained. Precursor 2 exists only in the enone form and could not be enolized, not by photo-activation nor by acidic or basic treatment. Consequently, neither auto-oxidation nor photo-oxygenation (via singlet oxygen) could lead to the desired endoperoxide intermediate.

Importantly, α -spiro cyclobutane endoperoxide 6 was successfully prepared although in poor yield (13%). It required the preparation of aldehyde 7 through the Parikh–Doëring oxidation (DMSO, $SO₃$ -pyridine) of hydroxymethyl cyclobutane (Scheme 3). The volatile aldehyde was not purified, but was used directly for condensation with syncarpic acid. The product, 3, was found to exist exclusively in the enone form; no sign of dienol could be detected by ¹H NMR. The autoxidation rate was very slow; even after 6 days enone 3 was still present. In this case, it seems that autoxidation was not selective. Purification by silicagel column chromatography afforded endoperoxide 6 besides enone 3 and several by-products, which were not identified. Endoperoxides 8 and 9 were readily obtained in 85% and 87% yields, respectively, calculated on the three steps. The structure of endoperoxide 8 has been confirmed by X-ray diffraction of the crystals obtained (Fig. 2).

Scheme 3. Preparation of aldehyde 7 via Parikh–Doering oxidation.

Figure 2. Molecular view of endoperoxide 8 in the solid state (thermal ellipsoids at 50% probability; hydrogen atoms are omitted for clarity).

2.2. From 5-norbornene-2-carboxaldehyde

The precursor formed from 5-norbornene-2-carboxaldehyde (endo/exo 80:20 mixture) and syncarpic acid was obtained as a mixture of two diastereoisomeric enones 10a/10b (75:25) and bis-adduct **13** (\langle 10%). Oxygen uptake revealed to be non-chemoselective: a complex mixture was obtained and purification by silicagel column chromatography afforded two diastereoisomeric endoperoxides in 22% and 2% yield as well as two inseparable diastereoisomeric epoxides 12a/12b (7%), and bis-adduct 13 (3%). An unidentifiable polar byproduct, presumably a polymer, was also observed [\(Scheme 4\)](#page-2-0).

2.3. From 2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde

As shown in [Scheme 5](#page-2-0), oxygen uptake on enone 14 afforded a complex mixture. Compounds were separated by chromatography: the major fraction was composed of compound 16 (26%), which resulted from intramolecular addition of dienol-OH on enol ether, in a mixture with endoperoxide 15a (9%). Endoperoxide 15b (6%), epoxide 17 (3%), and bis-adduct 18 (3%) could be separated

Scheme 4. Synthetic route starting from norbornene-carboxaldehyde.

Scheme 5. Synthetic route starting from 2,2-dimethyl-1,3-dioxolane-4carboxaldehyde.

18 (*3%*)

and identified by 2D NMR and mass spectroscopy. A polar fraction could not be identified.

2.4. Methylation of endoperoxides

As we have shown earlier, the methylation of the peroxyhemiketal function is crucial for antimalarial activity. 9 We planned to methylate the synthesized endoperoxides using previously optimized methodology. Endoperoxides 6, 8, 9, 11a, 15a, and 15b were treated with BuLi in THF at low temperature and the resulting lithium alkoxides were trapped with methyl trifluoromethane sulfonate (Scheme 6) to afford the corresponding methoxy derivatives 19, 20, 21, 22, 23a, and 23b, in moderate to good yield.

Scheme 6. Methylation of the peroxyhemiketal function.

X-ray diffraction analysis was performed on crystals of endo-peroxide 22.^{[12](#page-7-0)} It allowed determination of relative configurations of asymmetric carbons and the structure is shown in Figure 3.

Figure 3. Molecular view of endoperoxide 22 in the solid state (thermal ellipsoids at 50% probability; hydrogen atoms are omitted for clarity).

Endoperoxides 23a and 23b were characterized by 2D NMR (HMBC, HSQC experiments). NOESY NMR analysis permitted to differentiate between both diastereoisomeric endoperoxides and their relative stereochemistries (Fig. 4). For endoperoxide 23a, a correlation spot appeared on NOESY spectrum, between the methoxy and CH₂O whereas no such correlation exists for 23b. So 23a was the *anti* diasteroisomer (OMe and $CH₂O$ on the same side) and 23b the syn one. This relative configuration was confirmed by X-ray diffraction analysis of crystals of 23a ([Fig. 5\)](#page-3-0).^{[12](#page-7-0)}

Figure 4. NOE experiments on 23a and 23b endoperoxides.

The choice of 2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde was taken to introduce a spiro epoxide in the α -position of the peroxide moiety. Thus, after deprotection of the acetonide, introduction of a leaving group on primary hydroxyl group and nucleophilic ring closure would give the desired epoxide. Unfortunately, the low yield of endoperoxides 23a and 23b made it impractical to pursue our initial goals of conversion of the spiro endoperoxide dioxolane into a spiro epoxy endoperoxide.

Figure 5. Molecular view of endoperoxide 23a in the solid state (thermal ellipsoids at 50% probability; hydrogen atoms are omitted for clarity).

3. Antiplasmodial activity

Endoperoxides 6, 8, 9, 11a, and 15b and their methylated analogues 19, 20, 21, 22, 23a, and 23b were tested in vitro against the Nigerian strain of P. falciparum (Table 1). The activity was determined by Desjardins et al.¹⁶ using [³H] hypoxanthine incorporation to assess parasite growth. Parasitic viability was expressed as IC_{50} , the drug concentration causing 50% parasite growth inhibition.

Table 1

IC50 values of several endoperoxides and artemisinin (ART) on Nigerian strains of Plasmodium falciparum

$IC_{50}(\mu M)$	6 49	56	9 52	11a >100	15a nd ^a	15b 43	G3 30	
$IC_{50}(\mu M)$	19	20	21	22	23a	23 _b	G3Me	ART
	4.2	5.5	1.9	50	32	41	0.28	0.015

^a Not determined.

 IC_{50} values of non-methylated endoperoxides are in the same range as that of G3 and present very low inhibition of Plasmodium growth. Fe(II) induced reduction was performed on endoperoxides 8 and 9. The main products were cyclopentyl (hexyl) ketone and the acid previously obtained during Fe(II) reduction of G3 (Scheme 7). As for G3 reduction, only route (a) is involved and the same Fe(II) induced degradation mechanism can be invoked. Methylation of the peroxyhemiketal 6, 8, and 9 increases their antimalarial activity from 10- to 30-fold. Nevertheless G3Me remains the lead compound with its potent in vitro antimalarial activity in the submicromolar range.

However, the mechanism seems to be quite different for norbornene endoperoxide 11a and its methylated analogue 22, which shows no activity at all. Intermediate radicals must add to the double bond.

Concerning dioxolane endoperoxides 15a/b or 23a/b, they probably get deprotected in the acidic digestive vacuole of the parasite (pH=4.5–5.0),^{[17](#page-7-0)} which confers a high hydrophilicity and explains the low activity in both cases.

4. Conclusions

An expeditious methodology allowed an easy access to α -spiroalkane endoperoxides with good yields for cyclopentane 8 or cyclohexane 9 and moderate for cyclobutane 6. In the case of norbornyl or dioxolanyl units, autoxidation led to endoperoxides but in competition with parallel side-reactions. Biological activities of these endoperoxides and their methylated analogues didn't

Scheme 7. Fe(II)-induced reduction of endoperoxide 8 and 9.

allow lowering IC_{50} values to that obtained for G3Me. The same mode of action as G3Me can be invoked for 20 and 21 and the postulated route (b) wasn't observed.

5. Experimental section

5.1. General

Melting points were measured on a Büchi and were uncorrected. The NMR spectra were recorded on a Bruker Avance 300 FT-NMR or Bruker Avance 400. LRMS data were obtained by DCI/ NH3 on a TSQ 7000 Thermo-electron, or by ESI on API 365 Perkin Elmer Sciex or Q-trap Applied Biosystems. HRMS were recorded by ESI on GC TOF Waters. IR spectra were recorded on a Perkin Elmer 1760-X. Products designation have been defined using ChemDraw Ultra 8.0 (Cambridge Soft/Chem. Office 2004) software, which determines IUPAC nomenclature. Oxidation precursors 3–5,10, and 14 were not described as they were unstable. Only ¹NMR spectra were performed.

5.2. 6-(Cyclopropylmethylene)-2,2,4,4 tetramethylcyclohexane-1,3,5-trione (2)

Cyclopropane carboxaldehyde $(215 \mu L, 2.85 \text{ mmol})$ was solubilized in anhydrous dichloromethane (5 mL) at room temperature, under argon. Piperidine (285 µL, 2.85 mmol) was added dropwise. Syncarpic acid (0.519 g, 2.85 mmol) was suspended in dichloromethane (5 mL) and piperidine $(141 \mu L, 1.43 \text{ mmol})$ added dropwise. After 15 min, the iminium solution was poured onto the syncarpic acid suspension. The mixture was left 24 h then concentrated. Mannich base was obtained as a white solid. It was solubilized in dichloromethane, and then treated with saturated NH4Cl in HCl 1 M solution. The biphasic mixture was stirred for 30 min, separated and the aqueous phase extracted with dichloromethane. Organic phases were brought together, washed, and then dried over magnesium sulfate, filtered then concentrated. Enone 2 (0.638 g, 2.72 mmol) was obtained in 96% yield as a white solid. R_f (pet. ether/AcOEt 9:1) 0.50. ¹H NMR (300 MHz, CDCl₃)

 δ =1.00 (m, 2H, ABX system, CH₂), 1.33 (s, 6H, 2CH₃), 1.34 (m, 2H, ABX system), 1.35 (s, 6H, 2CH₃), 2.95 (m, 1H, CH), 6.79 (d, 1H, C=CH, 3 J_{HH}=11.8 Hz) ppm. 13 C NMR (75.46 MHz, CDCl₃) δ =13.2 (CH₂), 15.3 (CH), 22.5, 22.6 (2CH₃), 57.3, 58.4 (2C, 2CH₃CCH₃), 130.1 (C, C=CH), 167.0 (CH, C=CH), 196.6, 199.5 (2C, C=O), 209.3 (C, C=C- $(C=0)$ ppm. IR (KBr) v: 3073 (=CH), 2986–2871 (CH, CH₂ and CH₃), 1716 (C=O), 1585 (C=C) cm⁻¹. MS (DCI/NH₃, CH₂Cl₂, positive mode, m/z): 252 [MNH₄]⁺, 269 [MN₂H₇]⁺. HRMS (ESI, MeOH/ HCOOH, positive mode, m/z): calculated for $C_{14}H_{19}O_3$ 235.1334, found 235.1347.

5.3. Cyclobutane carboxaldehyde 7

Hydroxymethylcyclobutane (219 mg, 2.543 mmol) was solubilized in anhydrous dichloromethane (1.6 mL/mmol) under argon. DMSO (2 mL/mmol), triethylamine (1.767 mL, 12.713 mmol), and $SO₃$ -pyridine complex (2.023 g, 12.713 mmol) were added successively. After 30 min at room temperature, the mixture was diluted in diethyl ether then treated with brine. The organic phase is dried over magnesium sulfate, filtered, and then concentrated. The aldehyde is obtained and used as such. The aldehyde was kept in solution since it is very volatile. 1 H NMR (300 MHz, CDCl3) δ =1.70 and 2.36 (m, two parts of ABX systems, 6H, 3CH₂), 3.17 (m, 1H, CH), 9.72 (d, 1H, CHO, $^3\!J_{\rm HH}{=}$ 2.0 Hz) ppm.

5.4. 3-Cyclobutyl-8,8a-dihydro-8a-hydroxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (6)

Cyclobutane carboxaldehyde (215 µL, 2.85 mmol) was solubilized in anhydrous dichloromethane (13 mL) at room temperature, under argon. Piperidine (252 µL, 2.543 mmol) was added dropwise. Syncarpic acid (368 mg, 2.020 mmol) was suspended in dichloromethane (13 mL) and piperidine $(201 \mu L, 2.034 \text{ mmol})$ added dropwise. After 15 min the iminium solution was poured on the syncarpic acid suspension. The mixture was left 30 min and then concentrated. The Mannich base was obtained as a white solid. It was solubilized in dichloromethane, and then treated by saturated NH4Cl in HCl 1 M solution. The biphasic mixture was stirred for 30 min, and then the aqueous phase extracted with dichloromethane. Organic phases were brought together, washed, and then dried over magnesium sulfate, filtered, and then concentrated. Enone was left under air for 6 days. After evaporation and purification of the raw mixture by silicagel column chromatography (pet. ether/AcOEt 9:1) endoperoxide 6 (74 mg, 0.264 mmol) was obtained as white solid in 13% yield (calculated on three steps from syncarpic acid). R_f (pet. ether/AcOEt 8:2) 0.28. $^1{\rm H}$ NMR (300 MHz, CDCl₃) δ =0.99, 1.31, 1.36, 1.37 (4s, 3H, 4CH₃), 1.81, 2.66 (m, 6H, ABX₂) system, 3CH₂), 3.68 (1H, OH), 7.43 (s, 1H, C=CH) ppm. ¹³C NMR $(75.46 \text{ MHz}, \text{CDCl}_3)$ δ = 12.9 (CH₂), 15.1, 20.8, 24.0, 26.6 (4CH₃), 30.8, 32.6 (2CH₂), 51.7, 54.9 (2C, 2CH₃CCH₃), 81.9 (C, C=C-CO), 97.5 (C, $CO(OH)$), 131.3 (C, C=CH), 140.2 (CH, C=CH), 198.2 (C, C=C-C=O), 210.6 (C, C=O) ppm. IR (KBr) ν : 3441 (OH), 2980–2870 (CH₂ and CH₃), 1722 (C=O), 1690 (α, β unsaturated C=O), 1633 (C=C), 1101 (C–O peroxide), 1065 (C–O) cm $^{-1}$. MS (ESI, MeOH, positive mode, m/z): 303 [MNa]⁺, 583 [2MNa]⁺. HRMS (ESI, orthophosphoric acid, positive mode, m/z): calculated for $C_{15}H_{21}O_5$ 281.1389, found 281.1430.

5.5. 3-Cyclopentyl-8,8a-dihydro-8a-hydroxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (8)

The procedure was the same as that previously described but using cyclopentanecarboxaldehyde (300 mg, 3.057 mmol) and syncarpic acid (557 mg, 3.057 mmol). Enone was kept under air for 24 h. After purification by silicagel column chromatography (pet. ether/AcOEt 9:1), endoperoxide 8 (768 mg, 2.609 mmol) was obtained in 85% yield as a white solid. R_f (pet. ether/AcOEt 8:2) 0.37. ¹H NMR (300 MHz, CDCl₃) δ =1.03, 1.31, 1.36, 1.38 (4s, 3H, 4CH₃), 1.60, 2.40 (m, 8H, 4CH₂), 3.62 (1H, OH), 7.19 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ=15.1, 21.0, 24.1, 26.6 (4CH₃), 24.5, 24.9 (2CH₂), 35.6, 36.1 (2CH₂), 51.6, 54.9 (2C, 2CH₃CCH₃), 90.4 (C, C=C-CO), 97.6 (C, CO(OH)), 131.8 (C, C=CH), 142.7 (CH, C=CH), 198.1 (C, $C=C=C=0$), 210.7 (C, $C=0$) ppm. IR (diamond compression system) v: 3430 (OH), 3061 (=CH), 2974–2868 (CH₂ and CH₃), 1721 (C=0), 1687 (α, β unsaturated C=0), 1637 (C=C), 1096 (C-O) peroxide), 1086 (C-O alcohol) cm $^{-1}$. MS (ESI, MeOH, positive mode, m/z): 317 [MNa]⁺, 611 [2MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for C₁₆H₂₂O₅Na 317.1365, found 317.1309. Mp (Büchi)= $129 °C$.

5.6. 3-Cyclohexyl-8,8a-dihydro-8a-hydroxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (9)

The procedure was the same as that previously described but using cyclohexanecarboxaldehyde (194 mg, 1.730 mmol) and syncarpic acid (300 mg, 1.646 mmol). Enone was kept under air for 24 h. After purification by silicagel column chromatography (EP/ AcOEt 9:1), endoperoxide 9 (768 mg, 2.609 mmol) was obtained in 87% yield as a white solid. R_f (pet. ether/AcOEt 8:2) 0.31. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$ $\delta = 1.04, 1.32, 1.36, 1.37$ $(4s, 3H, 4CH_3), 1.50, 2.02$ (m, 10H, 5CH₂), 3.72 (s, 1H, OH), 7.18 (s, 1H, C=CH) ppm. ¹³C NMR $(75.46 \text{ MHz}, \text{CDCl}_3)$ $\delta = 15.1, 21.0, 24.1, 26.6$ $(4CH_3), 20.9, 21.1, 25.0,$ 31.7-33.0 (5CH₂), 51.6, 54.9 (2C, 2CH₃CCH₃), 80.6 (C, C=C-CO), 97.6 (C, CO(OH)), 132.0 (C, C=CH), 142.8 (CH, C=CH), 198.4 (C, C=C- $(C=0)$, 210.7 (C, $(C=0)$ ppm. IR (diamond compression system) v: 3455 (OH), 3059 (=CH), 2997–2848 (CH₂ and CH₃), 1714 (C=O), 1687 (α, β unsaturated C=O), 1635 (C=C), 1092 (C-O peroxide), 1065 (C–O alcohol) cm⁻¹. MS (ESI, MeOH, positive mode, m/z): 331 [MNa]⁺, [2MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for $C_{17}H_{24}O_5$ Na 331.1521, found 331.1588; calculated for C₃₄H₄₈O10₅Na 639.3145, found 639.3187. Mp (Büchi)=124 °C.

5.7. Synthesis of endoperoxides 11a and 11b

The procedure was the same as that previously described but using 5-norbornene-2-carboxaldehyde (362 mg, 2.964 mmol) and syncarpic acid (540 mg, 2.964 mmol). Enone was kept under air for 3 days. After purification by silicagel column chromatography (pet. ether/AcOEt 9:1), two diastereoisomeric endoperoxides 11a (209 mg, 0.656 mmol, 21%) and 11b (20 mg, 0.063 mmol, 2%) were obtained as a white solids besides a mixture 1:1 of two diastereoisomeric epoxides 12a/b (66 mg, 0.218 mmol, 7%) and Michael adduct 13 (42 mg, 0.090 mmol, 3%).

5.7.1. Diastereoisomer 11a

 R_f (pet. ether/AcOEt 8:2) 0.35. ¹H NMR (300 MHz, CDCl₃) δ =1.09, 1.34, 1.37 (4s, 3H, 3H, 6H, 4CH3), 1.64 (m, 2H, CCH2CH), 1.72, 1.93 (m, 2H, two parts of ABX system, CHCH₂CH), 3.00 (m, 1H, CH₂CHCH₂), 3.23 (m, 1H, CCHCH=CH), 3.69 (1H, OH), 6.04 (1H, dd, CCHCH=CH, $^3J_{\text{HH}}$ =3.0, =5.7 Hz), 6.38 (1H, dd, CCHCH=CH, $^3J_{\text{HH}}$ =3.1, =5.7 Hz), 7.06 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =15.1, 21.0, 24.1, 26.6 (4CH₃), 38.3 (CH₂, CCH₂CH), 41.3 (CH, CCH₂CH), 48.1 (CH₂, CCHCH₂), 51.6, 54.8 (2C, 2CH₃CCH₃), 51.6 (CH, CCHCH=CH), 90.2 (C, C=CH–C–O), 97.4 (C, CO(OH)), 132.3 (C, C=CH), 132.7 (CH, CCHCH=CH), 140.6 (CH, CCHCH=CH), 143.9 (CH, C=CH), 197.9 (C, C=C–C=O), 210.7 (C, C=O) ppm. IR (KBr) ν : 3491 (OH), 3081 and 3070 (=CH), 2986–2873 (CH, CH₂ and CH₃), 1721 (C=O), 1683 (α, β unsaturated $C=0$), 1633 (C=C), 1080 (C–O peroxide), 1061 (C–O, alcohol) cm⁻¹. MS (ESI, CH₂Cl₂/MeOH, positive mode, m/z): 341 [MNa]⁺, 659 [2MNa]⁺. HRMS (ESI, CH₂Cl₂/MeOH, positive mode, m/z): calculated for C₁₈H₂₂O₅Na 341.1365, found 341.1406. Mp (Büchi) = 108 °C.

5.7.2. Diastereoisomer 11b

 $R_{\!f}$ (pet. ether/AcOEt 8:2) 0.41. 1 H NMR (300 MHz, CDCl $_3$) $\delta{=}$ 0.99, 1.32, 1.35, 1.39 (4s, 3H, 4CH3), 1.44, 2.30 (m, 2H, two parts of ABX system, CCH_2CH), 2.03, 2.30 (m, 2H, two parts of ABX system, CHCH₂CH), 2.78 (m, 1H, CH₂CHCH₂), 3.06 (m, 1H, CCHCH=CH), 6.17 (dd, 1H, CCHCH=CH, ³J_{HH}=3.0, =5.6 Hz), 6.50 (dd, 1H, CCHCH=CH,
³L...–3.2, -5.6 Hz), 6.97 (s. 1H, C—CH),ppp, ¹³C NMR (75.46 MHz 3 J_{HH}=3.2, =5.6 Hz), 6.97 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =15.2, 20.8, 24.5, 24.6 (4CH₃), 39.7 (CH₂, CCH₂CH), 42.29 (CH, CCH₂CH), 47.7 (CH₂,CCHCH₂), 51.0 (CH, CCHCH=CH), 51.7, 54.8 (2C, 2CH₃CCH₃), 89.8 (C, C=CH-C-O), 97.3 (C, CO(OH)), 131.8 (CH, CCHCH=CH), 132.4 (C, C=CH), 142.9 (CH, CCHCH=CH), 143.4 (CH, C=CH), 198.2 (C, C=C-C=O); 210.8 (C, C=O) ppm. MS (ESI, CH₂Cl₂/ MeOH, positive mode, m/z): 341 [MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for $C_{18}H_{22}O_5$ Na 341.1365, found 341.1390.

5.8. 2,2,4,4-Tetramethyl-6-(3-(bicyclo[2.2.1]hept-5 en-2-yl))oxiranyl-cyclohexane-1,3,5-trione (12)

5.8.1. Diastereoisomer 12a

 R_f (pet. ether/AcOEt 9:1) 0.57. $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) δ =0.67 and 1.66 (m, 2H, two parts of ABX system, (O)CHCHCH2CH), 0.99 and 1.23 (m, 2H, two parts of ABX system, CHCH2CH), 1.28, 1.34, 1.35, 1.44 (4s, 3H, 4CH3), 1.96 (m, 1H, (O)CHCH), 2.86 (m, 1H, (O)CHCHCH2CH), 3.14 (m, 1H, (O)CHCHCH), 3.20 (d, 1H, CH(O)), 6.18 (m, 2H, CH=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =19.3, 21.3, 23.9, 24.0 (4CH₃), 29.2 (CH₂, (O)CHCHCH2CH), 35.8 (CH, (O)CHCH), 42.5 (CH, (O)CHCHCH2CH), 45.8 (CH, (O)CHCHCH), 49.4 (CH₂, CHCH₂CH), 59.7-60.2 (2C, 2CH₃CCH₃), 63.8 (C, O=C-C(O)–C=O), 73.1 (CH, C(O)CH), 132.6– 138.0 (2CH, C=C), 201.9–202.1 (2C, 2(C=O)C(O)), 207.3 (C, $(C=0)$ ppm. MS (DCI/NH₃, CH₂Cl₂, positive mode, m/z): 320 $[MMH₄]⁺$, 337 $[MN₂H₇]⁺$, 622 $[2MNH₄]⁺$. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): calculated for $C_{18}H_{23}O_4$ 303.1596, found 303.1594.

5.8.2. Diastereoisomer 12b

 R_f (EP/AcOEt 9:1) 0.57. ^1H NMR (300 MHz, CDCl₃) $\delta{=}0.94$ and 1.88 (m, 2H, two parts of ABX system, (O)CHCHCH₂CH), 1.01 and 1.19 (m, 2H, two parts of ABX system, CHCH2CH), 1.36, 1.40, 1.42, 1.45 (4s, 3H, 4CH3), 1.94 (m, 1H, (O)CHCH), 2.58 (m, 1H, (O)CHCHCH), 2.90 (m, 1H, (O)CHCHCH2CH), 3.23 (d, 1H, CH(O)), 5.90 (m, 1H, CH=CH), 6.28 (m, 1H, CH=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =20.5, 21.7, 23.0, 23.5 (4CH₃), 31.0 (CH₂, (O)CHCHCH2CH), 36.2 (CH, (O)CHCH), 42.3 (CH, (O)CHCHCH2CH), 44.6 (CH, (O)CHCHCH), 49.9 (CH₂, CHCH₂CH), 59.7, 60.2 (2C, 2CH₃CCH₃), 63.8 (C, O=C-C(O)-C=O), 73.5 (CH, C(O)CH), 131.2 (CH, C=C), 139.2 (CH, C=C), 201.9–202.1 (2C, 2(C=O)C(O)), 207.3 (C, C=O) ppm. MS (DCI/NH₃, CH₂Cl₂, positive mode, m/z): 320 $[MMH_4]^+$, 337 $[MN_2H_7]^+$, 622 $[2MNH_4]^+$. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z : calculated for $C_{18}H_{23}O_4$ 303.1596, found 303.1594.

5.9. 4-((Bicyclo[2.2.1]hept-5-en-2-yl)(2-hydroxy-3,3,5,5 tetramethyl-4,6-dioxocyclohex-1-enyl)methyl)-5-hydroxy-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione (13)

 R_f (pet. ether/AcOEt 8:2) 0.50. ¹H NMR (300 MHz, CDCl₃) δ =0.30 and 1.71 (m, 2H, two parts of ABX system, CHCH₂CH), 1.30 and 1.44 (m, 2H, two parts of ABX system, CHCH₂CH), 1.33, 1.35, 1.36, 1.39, 1.40, 1.42, 1.47, 1.53 (8s, 24H, 8CH3), 2.57 (m, 1H, CHCHCHCH2), 2.76 (m, 1H, CH2CHCH2), 3.31 (m, 2H, 2CHCH), 5.68 (dd, 1H, CH]CH, ³ ^JHH¼2.7, ^¼5.8 Hz), 6.21 (dd, 1H, CH]CH, ³ 3 J_{HH}=3.1, =5.8 Hz), 13.36 (1H, OH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =24.6, 25.1, 25.1, 25.7, 23.3, 24.5, 25.6, 36.6 (8CH₃), 31.7 (CH₂, CCHCHCH₂), 42.6 (CH, CCHCHCH₂C), 45.1 (CH, CCHCHCH), 49.3 (CH, CCHCHCHCH2), 51.1, 51.7 (2C, 2CH3CCH3), 51.8, 52.6 (2C, $2CH_3CCH_3$), 113.4-113.5 (2C, 2C(OH)=C), 131.3 (CH, CH=CH), 138.6 (CH, CH=CH), 189.7, 189.8 (2C, 2C(OH)=C), 193.3, 193.5 (2C, 2C(OH)=C-C=O), 212.3, 212.5 (2C, 2C=O) ppm. MS (DCI/ NH₃, CH₂Cl₂, positive mode, m/z): 469 [MH]⁺, 486 [MNH₄]⁺. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): calculated for $C_{28}H_{37}O_6$ 469.2590, found 469.2596.

5.10. Synthesis of endoperoxides 15a (anti) and 15b (syn)

The procedure was the same as that previously described but using 2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde (309 mg, 2.374 mmol) and syncarpic acid (433 mg, 2.374 mmol). Enone was kept under air for 6 days. After purification by silicagel column chromatography (pet. ether/AcOEt 8:2), a major fraction (252 mg) was obtained containing both endoperoxide **15a** (71 mg by estimation on ¹H NMR spectrum, 0.216 mmol, 9%) and ether 16 (181 mg, 0.616 mmol) besides endoperoxide 15b (43 mg, 0.132 mmol, 6%) obtained as a white solid, epoxide 17 (22 mg, 0.071 mmol, 3%), and Michael adduct 18 (33 mg, 0.069 mmol, 3%).

5.10.1. (3R*,8aS*)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-8,8adihydro-8a-hydroxy-6,6,8,8-tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (15a)

 R_f (EP/AcOEt 7:3) 0.38. ¹H NMR (300 MHz, CDCl₃) δ =1.08, 1.33, 1.35, 1.37 (4s, 3H, 4CH₃), 1.48, 1.58 (2s, 3H, 2CH₃, ketal), 4.03 and 4.14 (d, 2H, two parts of AB system, CH₂, 2 J_{HH}=10.2 Hz), 6.91 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =14.8, 21.0, 24.0, 26.4 (4CH3), 26.1, 26.4 (2CH3, ketal), 52.0, 55.0 (2C, 2CH3CCH3), 71.5 (CH₂, CCH₂O), 97.0 (C, CO(OH)), 103.4 (C, C(O)₂CH₂), 114.0 (C, $C(O)_2(CH_3)_2$, 132.1 (CH, C=CH), 135.1 (C, C=CH), 198.0 (C, C=C- $(C=0)$, 210.1 (C, $(C=0)$ ppm. MS: (DCI/NH₃, CH₂Cl₂, positive mode, m/z): 344 [MNH₄]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for $C_{16}H_{22}O_7$ Na 349.1263, found 349.1169.

5.10.2. (3R*,8aR*)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-8,8adihydro-8a-hydroxy-6,6,8,8-tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (15b)

 R_f (EP/AcOEt 7:3) 0.56. ¹H NMR (300 MHz, CDCl₃) δ =0.99, 1.29, 1.35, 1.37 (4s, 3H, 4CH3), 1.46, 1.54 (2s, 3H, 2CH3 ketal), 3.96 and 4.48 (2d, 2H, two parts of AB system, CH₂, 2 J_{HH}=9.7 Hz), 6.96 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =14.6, 20.8, 24.0, 26.4 (4CH3), 25.4, 27.3 (2CH3, ketal), 51.6, 54.8 (2C, 2CH3CCH3), 71.3 (CH₂, CCH₂O), 97.7 (C, CO(OH)), 105.3 (C, C(O)₂CH₂), 114.9 (C, $C(O)_2(CH_3)_2$, 133.7 (CH, C=CH), 137.5 (C, C=CH), 197.5 (C, C=C-C=0), 209.8 (C, C=0) ppm. MS (ESI, MeOH, positive mode, m/z): 349 [MNa]⁺, 675 [2MNa]⁺. HRMS (ESI, MeOH, positive mode, $m/$ z): calculated for $C_{16}H_{22}O_7$ Na 349.1263, found 349.1169.

5.11. 2,3-Dihydro-2-(2,2-dimethyl-1,3-dioxolan-4-yl)-5,5,7,7 tetramethylbenzofuran-4,6(5H,7H)-dione (16)

 R_f (EP/AcOEt 7:3) 0.38. ¹H NMR (300 MHz, CDCl₃) δ =1.31, 1.33, 1.38, 1.41, (4s, 3H, 4CH₃), 1.43, 1.54 (2s, 3H, 2CH₃ ketal), 3.02 and 3.06 (2d, 2H, two parts of AB system, C=C-CH₂, 2 J_{HH}=16.3 Hz), 4.04 and 4.36 (2d, 2H, two parts of AB system, CH_2 , $^3J_{HH}$ =9.6 Hz) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =24.0, 24.2, 24.7, (4CH₃), 25.8, 27.1 $(2CH₃ ketal), 33.7 (CH₂, C=C-CH₂), 45.1, 55.35 (2C, 2CH₃CCH₃), 73.6$ (CH₂, CCH₂O), 108.6 (C, C=C–CH₂), 113.2 (C, C(O)₂(CH₃)₂), 116.4 (C, $C(O)_2(CH_2)_2$, 175.2 (C, C=C-O), 194.2 (C, C=C-C=O), 213.2 (C, $(C=0)$ ppm. IR (diamond compression system) v: 2983–2876 (CH₂) and CH₃), 1717 (C=O), 1626 (C=C), 1057 (C–O) cm⁻¹. MS (DCI/NH₃, CH₂Cl₂, positive mode, m/z): [MH]⁺ 295, [MNH₄]⁺ 312. HRMS (DCI/ CH₄, CH₂Cl₂, positive mode, m/z): calculated for C₁₆H₂₃O₅ 295.1545, found 295.1568.

5.12. 5-Hydroxy-4-(3-(2,2-dimethyl-1,3-dioxolan-4-yl)oxiran-2-yl)-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione (17)

 $R_f(\text{EP/ACOE}$ t 1:1) 0.49. $^1\text{H NMR}$ (300 MHz, CDCl $_3$) $\delta{=}1.33$, (s, 6H, 2CH₃), 1.41, 1.44 (2s, 3H, 2CH₃), 1.46, 1.54 (2s, 3H, 2CH₃ ketal), 4.31 and 4.53 (2d, 2H, two parts of AB system, CH₂, 2 J_{HH}=10.4 Hz), 5.15 (s, 1H, CHO) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =23.9, 24.0 (4CH₃), 25.7, 26.9 (2CH₃ ketal), 45.4, 55.5 (2C, 2CH₃CCH₃), 69.4 (CH₂), 74.12 (CH), 112.6 (C, C=C-C=O), 113.7 (C, $C(O)_2(CH_3)_2$), 119.0 (C, $C(O)_2CH_2$), 179.5 (C, C=C–OH), 195.3 (C, C=C–C=O), 212.4 (C, $(C=0)$ ppm. MS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): 311 [MH]⁺. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): calculated for C16H23O6 311.1495, found 311.1507.

5.13. 5-Hydroxy-4-((2-hydroxy-3,3,5,5-tetramethyl-4,6 dioxocyclohex-1-enyl)(2,2-dimethyl-1,3-dioxolan-4 yl)methyl)-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione (18)

 $R_{\textit{f}}$ (EP/AcOEt 1:1) 0.60. 1 H NMR (300 MHz, CDCl $_3$) $\delta{=}1.26$ (s, 6H, 2CH3), 1.36 (s, 12H, 4CH3), 3.42and 3.93 (2dd, 2H, two parts of ABX system, CH₂, ²J_{HH}=8.2 Hz, ³J_{HH}=4.6, ³J_{HH}=5.7 Hz), 3.99 (d, 1H, CHCHCH₂, 3 J_{HH}=10.2 Hz), 5.17 (m, 1H, CHCHCH₂), 12.28 (1H, OH) ppm. 13 C NMR (75.46 MHz, CDCl₃) δ =24.6–27.3 (8CH₃), 25.5 (2CH₃), 37.6 (CH, CHCHCH₂), 51.6 (C, 2CH₃CCH₃), 68.6 (CH₂, CHCHCH₂), 72.3 (CH, CHCHCH₂), 109.6 (C, C(O)₂(CH₃)₂), 110.9 (C, C=C-OH), 187.7 (C, C=C-OH), 195.9 (C, C=C-C=O), 211.8 (C, $(C=0)$ ppm. MS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): 477 [MH]⁺. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): calculated for $C_{26}H_{37}O_8$ 477.2488, found 477.2471.

5.14. 3-Cyclobutyl-8,8a-dihydro-8a-methoxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (19)

Endoperoxide 6 (45 mg, 0.161 mmol) was solubilized in anhydrous THF (14 mL) under argon and cooled at -78 °C. (1.3 M/ hexane) butyllithium solution $(170 \mu L, 0.221 \text{ mmol})$ was added dropwise. After stirring for 15 min, methyl triflate $(25 \mu L,$ 0.221 mmol) was added. The mixture was kept at -78 °C for 4 h and then solution of saturated NH4Cl was added. Aqueous phase was extracted with dichloromethane, organic phases brought together, washed with water, dried over magnesium sulfate, filtered, and evaporated. The crude mixture was purified on column chromatography of silicagel, (pet. ether/AcOEt=9:1). Endoperoxide 19 (22 mg, 0.075 mmol) is obtained in 47% yield. R_f (pet. ether/AcOEt 8:2) 0.58. ¹H NMR (400 MHz, CDCl₃) δ =0.97, 1.27, 1.29, 1.34 (4s, 3H, 4CH₃), 1.95 and 2.06 (2 m, 2H, two parts of ABX_2 system, CH₂CH₂CH₂), 2.19-2.58 (m, 4H, 2CH₂), 3.41 (s, 3H, OCH₃), 7.61 (s, 1H, C=CH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ =13.0 (CH₂), 15.5, 21.5, 24.8, 26.0 (4CH3), 30.6, 32.6 (2CH2), 53.2, 54.7 (2C, 2CH₃CCH₃), 54.4 (OCH₃), 81.2 (C, C=C-CO), 100.4 (C, CO(OCH₃)), 128.1 (C, C=CH), 142.9 (CH, C=CH), 199.1 (C, C=C–C=O), 210.5 (C, $(C=0)$ ppm. IR (KBr) v: 2978–2844 (CH₂ and CH₃), 1727 (C=O), 1687 (α, β unsaturated C=O), 1631 (C=C), 1099 (C-O peroxide), 1079 (C–O) cm⁻¹. HRMS (DCI/CH₄, CH₂Cl₂, positive mode, m/z): calculated for $C_{16}H_{22}O_5$ 294.1467, found 294.1504. Mp (Büchi)=78 °C.

5.15. 3-Cyclopentyl-8,8a-dihydro-8a-methoxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (20)

The procedure was the same as that previously described but using endoperoxide 7 (47 mg, 0.160 mmol). Methylated endoperoxide 20 (39 mg, 0.126 mmol) was obtained in 79% yield after purification by silicagel column chromatography, (pet. ether/ AcOEt=9:1). R_f (pet. ether/AcOEt 8:2) 0.59. $^1{\rm H}$ NMR (300 MHz, CDCl₃) δ =1.00, 1.27, 1.28, 1.33, (4s, 3H, 4CH₃), 1.60–2.40 (m, 8H, 4CH₂), 3.44 (3H, OCH₃), 7.38 (s, 1H, C=H) ppm. ¹³C NMR $(75.46 \text{ MHz}, \text{CDCl}_3)$ $\delta = 15.5, 21.6, 24.7, 25.9$ $(4CH_3), 24.5, 24.9)$ $(2CH₂), 35.4, 35.9 (2CH₂), 53.0, 54.55 (2C, 2CH₃CCH₃), 54.48 (OCH₃),$ 89.6 (C, C=CH-CO), 100.5 (C, CO(OCH₃)), 128.4 (C, C=CH), 145.4 (CH, C=CH), 198.8 (C, CH=C-C=O), 210.6 (C, C=O) ppm. IR (diamond compression system) ν : 3060 (=CH), 2960–2833 (CH₂ and CH₃), 1726 (C=O), 1690 (α , β unsaturated C=O), 1639 (C=C), 1098 (C–O peroxide), 1050 (C–O) cm^{-1} . MS (ESI, MeOH, positive mode, m/z): 331 [MNa]⁺, 639 [2MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for C₁₇H₂₄O₅Na 331.1521, found 331.1545. Mp (Büchi)=63 \degree C.

5.16. 3-Cyclohexyl-8,8a-dihydro-8a-methoxy-6,6,8,8 tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (21)

The procedure was the same as that previously described but using endoperoxide 9 (50 mg, 0.162 mmol). Methylated endoperoxide 21 (31 mg, 0.096 mmol) was obtained in 59% yield after purification by silicagel column chromatography, (pet. ether/ AcOEt=9:1). R_f (pet. ether/AcOEt 9:1) 0.41. ^1H NMR (300 MHz, CDCl₃) δ =1.03, 1.28, 1.30, 1.33 (4s, 3H, 4CH₃), 1.45-1.97 (m, 10H, 5CH₂), 3.46 (3H, OCH₃), 7.38 (s, 1H, C=H) ppm. ¹³C NMR $(75.46 \text{ MHz}, \text{CDCl}_3)$ $\delta = 15.6 \text{ (CH}_3)$, 21.0, 21.05 (2CH₂), 21.7 (CH₃), 24.7 (CH₃), 25.0 (CH₂), 25.9 (CH₃), 31.6, 32.9 (2CH₂), 53.1, 54.68 (2C, 2CH₃CCH₃), 54.76 (OCH₃), 79.7 (C, C=CH-CO), 100.6 (C, $CO(OCH₃))$, 128.5 (C, C=CH), 145.5 (CH, C=CH), 199.0 (C, CH=C-C=0), 210.5 (C, C=0) ppm. IR (KBr) ν : 3055 (=CH), 2991-2852 (CH₂ and CH₃), 1719 (C=O), 1689 (α, β unsaturated C=O), 1637 (C=C), 1105 (C-O peroxide), 1050 (C-O) cm⁻¹. MS (ESI, CH₂Cl₂/ MeOH, positive mode, m/z): 345 [MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for C₁₈H₂₆O₅Na 345.1678, found 345.1711. Mp (Büchi)=56 °C.

5.17. 3-(Bicyclo[2.2.1]hept-5-en-2-yl)-8,8a-dihydro-8amethoxy-6,6,8,8-tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H) dione (22)

The procedure was the same as that previously described but using endoperoxide 11a (45 mg, 0.141 mmol). Methylated endoperoxide 22 (34 mg, 0.102 mmol) was obtained in 73% yield after purification by silicagel column chromatography, (pet. ether/ AcOEt=9:1). R_f (pet. ether/AcOEt 8:2) 0.54. $^1{\rm H}$ NMR (300 MHz, CDCl₃) δ =1.08, 1.29, 1.31, 1.35 (4s, 3H, 4CH₃), 1.65 (m, 2H, CH₂), 1.70 and 1.91 (2 m, 2H, two parts of ABX system, CHCH₂CH), 2.99 (m, 1H, $CH₂CHCH₂$), 3.17 (m, 1H, CCHCH=CH), 3.44 (s, 3H, OCH₃), 6.04 (1H, dd, CCHCH=CH, 3 _{JHH}=3, =5.7 Hz), 6.38 (1H, dd, CCHCH=CH, 3_L, ..., 31, ..., 727 (s. 1H, C-CH) ppm ¹³C NMR (75.46 MHz ${}^{3}J_{HH}$ =3.1, =5.7 Hz), 7.27 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =15.5, 21.7, 24.7, 25.9, (4CH₃), 37.9 (CH₂, CCH₂CH), 41.2 (CH, CCH₂CH), 48.0 (CH₂, CCHCH₂), 51.5 (CH, CCHCH=CH), 53.0, 54.6 (2C, 2CH₃CCH₃), 54.6 (OCH₃), 89.5 (C, C=CH-C-O), 100.3 (C, $CO(OCH₃))$, 128.9 (C, C=CH), 132.7 (C, C=CH), 140.6 (CH, CCHCH=CH), 146.7 (CH, C=CH), 198.6 (C, C=C-C=O), 210.6 (C, $(C=0)$ ppm. IR (diamond compression system) ν : 3081 and 3061 $(=CH)$, 2989–2869 (CH, CH₂ and CH₃), 1728 (C=O), 1688 (α , β unsaturated C=0), 1632 (C=C), 1162 (C-0), 1103 (C-0 peroxide) cm⁻¹. MS (ESI, CH₂Cl₂/MeOH, positive mode, m/z): 355 [MNa]⁺, 687 [2MNa]⁺. HRMS (ESI, CH₂Cl₂/MeOH, positive mode, m/ z): calculated for $C_{19}H_{24}O_5$ Na 355.1521, found 355.1565. Mp (Büchi)=76 \degree C.

5.18. Methylation of endoperoxides 15a and 15b

Methylation was performed on anti 15a or syn 15b (37 mg, 0.113 mmol). Methylated endoperoxides anti 23a or syn 23b (13 mg, 0.038 mmol) were obtained in 34% yield after purification by silicagel column chromatography (pet ether/AcOEt=9:1).

5.18.1. (3R*,8aS*)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-8,8adihydro-8a-methoxy-6,6,8,8-tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (23a)

 $R_{\textit{f}}$ (pet. ether/AcOEt 8:2) 0.50. 1 H NMR (300 MHz, CDCl $_3$) $\delta{=}1.07$, 1.29, 1.31, 1.36 (4s, 3H, 4CH₃), 1.48, 1.58 (2s, 3H, 2CH₃ ketal), 3.40 (3H, OCH₃), 4.03 and 4.17 (d, 2H, two parts of AB system, CH₂, $^{2}I_{HH}$ =10.0 Hz), 7.10 (s, 1H, C=CH) ppm. ¹³C NMR (75.46 MHz, CDCl₃) δ =15.3, 21.7, 24.8, 25.9 (4CH₃), 26.3, 26.4 (2CH₃, ketal), 53.4, 54.8 (2C, 2CH₃CCH₃), 54.3 (OCH₃), 71.3 (CH₂, CCH₂O), 99.9 (C, CO(OCH3)), 102.8 (C, C(O)2CH2), 114.0 (C, C(O)2(CH3)2), 132.1 (CH, C=CH), 134.6 (C, C=CH), 198.9 (C, C=C-C=O), 209.8 (C, $(C=0)$ ppm. IR (diamond compression system) v: 3065 (=CH), 2982–2876 (CH₂ and CH₃), 1727 (C=O), 1695 (α, β unsaturated $(C=0)$, 1648 (C=C), 1105 (C–O peroxide), 1088 and 1070 (C– O) cm⁻¹. MS (ESI, MeOH, positive mode, m/z): 363 [MNa]⁺.

5.18.2. (3R*,8aR*)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-8,8adihydro-8a-methoxy-6,6,8,8-tetramethylbenzo[c][1,2]dioxine-5,7(3H,6H)-dione (23b)

 $R_{\!f}$ (pet. ether/AcOEt 8:2) 0.62. 1 H NMR (400 MHz, CDCl $_3$) $\delta{=}1.01,$ 1.28, 1.30, 1.34 (4s, 3H, 4CH3), 1.48, 1.56 (2s, 3H, 2CH3 ketal), 3.52 $(3H, OCH₃)$, 3.95 and 4.41 $(2d, 2H, two parts of AB system, CH₂)$ 2 J_{HH}=9.6 Hz), 7.19 (s, 1H, C=CH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ =15.1, 21.6, 25.0, 25.8 (4CH₃), 25.6, 27.2 (2CH₃ ketal), 53.3, 54.7 (2C, 2CH₃CCH₃), 54.8 (OCH₃), 71.3 (CH₂, CCH₂O), 100.8 (C, CO(OCH₃)), 104.7 (C, C(O)₂CH₂), 114.7 (C, C(O)₂(CH₃)₂), 140.0 (C, C=CH), 136.6 (CH, C=CH), 198.1 (C, C=C-C=O), 209.8 (C, C=O) ppm. IR (diamond compression system) v: 3087 (=CH), 2994–2878 (CH₂ and CH₃), 1725 (C=O), 1696 (α , β unsaturated C=O), 1655 (C=C), 1105 (C–O peroxide), 1088 and 1057 (C–O) $\rm cm^{-1}$. MS (ESI, MeOH, positive mode, m/z): 363 [MNa]⁺. HRMS (ESI, MeOH, positive mode, m/z): calculated for $C_{17}H_{24}O_7$ Na 363.1420, found 363.1432.

Acknowledgements

We acknowledge the 'Ministère de l'Education Nationale' for a grant to V.B. and T. Ugolini for manuscript rereading.

Supplementary data

¹³C NMR spectra of endoperoxides **2, 8, 9, 11a, 15a**+16, 15b, 19, 20, 21, 22, 23a, and 23b and crystallographic data of 8, 22, and 23a are presented. Supplementary data associated with this article can be found in the online version, at [doi:10.1016/j.tet.2009.07.030.](http://dx.doi.org/doi:10.1016/j.tet.2009.07.030)

References and notes

- 1. Renslo, A. R.; McKerrow, J. H. Nat. Chem. Biol. 2006, 2, 701–710.
- 2. Borstnik, K.; Paik, I.-H.; Shapiro, T. A.; Posner, G. H. Int. J. Parasitol. 2002, 32, 1661–1667.
- 3. (a) Jefford, C. W.; McCoran, E. C.; Boukouvalas, J.; Richardson, G.; Robinson, B. L.; Peters, W. Helv. Chim. Acta 1988, 71, 1805–1812; (b) Peters, W.; Robinson, B. L.;

Rossier, J. C.; Misra, D.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 9–16; (c) Dechy-Cabaret, O.; Benoit-Vical, F.; Loup, C.; Robert, A.; Gornitzka, H.; Bonhoure, A.; Vial, H.; Magnaval, J.-F.; Séguéla, J.-P.; Meunier, B. Chem.-Eur. J. 2004, 10, 1625–1636; (d) Singh, C.; Malik, H.; Puri, S. K. J. Med. Chem. 2006, 49, 2794– 2803; (e) O'Neill, P. M.; Rawe, S. L.; Borstnik, K.; Miller, A.; Ward, Q. A.; Bray, P. G.; Davies, J.; Oh, C. H.; Posner, G. H. ChemBioChem 2005, 6, 2048–2054.

- 4. (a) Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Santo Tomas, J.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W. N. Nature 2004, 430, 900–904; (b) Biagni, G. A.; O'Neill, P. M.; Bray, P. G.; Ward, S. A. Curr. Opin. Pharmacol. 2005, 5, 473–478.
- 5. (a) Posner, G. H.; O'Dowd, H.; Ploypradith, P.; Cumming, J. N.; Xie, S.; Shapiro, T. A. J. Med. Chem. 1998, 41, 2164–2167; (b) Posner, G. H.; O'Dowd, H. Heterocycles 1998, 47, 643–646.
- 6. (a) Zhang, L.; Zhou, W.-S.; Xu, X.-X. J. Chem. Soc., Chem. Commun. 1988, 523– 524; (b) Hoffmann-La Roche & Co., F. Drugs Future 1995, 20, 341–343; (c) Hofheinz, W.; Burgin, H.; Gocke, E.; Jaquet, C.; Masciadri, R.; Schmid, G.; Stohler, H.; Urwyler, H. Trop. Med. Parasitol. 1994, 45, 261–265; (d) Bachi, M. D.; Korshin, E. E.; Hoos, R.; Szpilman, A. M.; Ploypradith, P.; Xie, S.; Shapiro,
T.; Posner, G. J. *Med. Chem.* **2003**, 46, 2516–2533; (e) O'Neill, P. M.; Stocks, P. A.; Pugh, M. D.; Araujo, N. C.; Korshin, E. E.; Bickley, J. F.; Ward, S. A.; Bray, P. G.; Pasini, E.; Davies, J.; Verissimo, E.; Bachi, M. D. Angew. Chem., Int. Ed. 2004, 43, 4193–4197.
- 7. Najjar, F.; Baltas, M.; Gorrichon, L.; Moreno, Y.; Tzedakis, T.; Vial, H.; André-Barrès, C. Eur. J. Org. Chem. 2003, 17, 3335-3343.
- 8. Najjar, F.; Gorrichon, L.; Baltas, M.; André-Barrès, C.; Vial, H. Org. Biomol. Chem. 2005, 3, 1612–1614.
- 9. Najjar, F.; Gorrichon, L.; Baltas, M.; Vial, H.; Tzedakis, T.; André-Barrès, C. Bioorg. Med. Chem. Lett. 2004, 14, 1433–1436.
- 10. André-Barrès, C.; Najjar, F.; Bottalla, A.-L.; Massou, S.; Zedde, C.; Baltas, M.; Gorrichon, L. J. Org. Chem. 2005, 70, 6921–6924.
- 11. (a) Najjar, F.; André-Barrès, C.; Lauricella, R.; Gorrichon, L.; Tuccio, B. Tetrahedron Lett. 2005, 46, 2117-2119; (b) Bernat, V.; André-Barrès, C.; Baltas, M.; Saffon, N.; Vial, H. Tetrahedron 2008, 64, 9216–9224.
- 12. Crystal data for 8: C₁₆H₂₂O₅, M=294.34, monoclinic, P2(1)/c, a=12.4092(8) Å b=11.6069(8) Å, c=11.0361(7) Å, α=90°, β=108.951(4)°, γ=90°, V=1503.40 Å³.
Z=4, crystal size 0.15×0.10×0.10 mm³, 16,069 reflections (2513 independent. R_{int} =0.1489), 179 parameters, R1 (I>2 σ (I))=0.0550, wR₂(all data)=0.1164,
largest diff. peak and hole 0.230 and -0.272 e Å⁻³ Crystal data for **22**: C₁₉H₂₄O₅, M=332.38, monoclinic, P2(1)/c, a=11.0364(5) Å, b=8.4595(4) Å, $c=18.9412(9)$ Å, $\alpha=90^{\circ}$, $\beta=103.9820(10)^{\circ}$, $\gamma=90^{\circ}$, $V=1716.00$ Å³, Z=4, crystal
size 0.60×0.40×0.30 mm³, 17,614 reflections (4510 independent, R_{int}=0. 0262), 222 parameters, R1 (I>2 σ (I))=0.0406, wR2(all data)=0.1047, largest diff. peak and hole 0.382 and -0.210 e \AA^{-3} Crystal data for **23a**: C₁₇H₂₄O₇, M=340.36, triclinic, P−1, a=8.2032(7) Å, b=13.2769(11) Å, c=18.159(2) Å,
α=108.917(5)°, β=98.325(5)°, γ=101.103(4)°, V=1789.6(3) Å³, *Z=*4, crystal size $0.50\times0.40\times0.10$ mm³, 19,988 reflections (7255 independent, $R_{\text{int}}=0$. 0368), 447 parameters, R1 $(I > 2\sigma(I)) = 0.0495$, wR₂(all data)=0.1173, largest diff. peak and hole 0.257 and -0.174 e A^{-3} Data for 8, 22, and 23a were collected at 173(2) K using an oil-coated shock-cooled crystal on a Bruker-AXS APEX II diffractometer (λ =0.71073 A). Semi-empirical absorption corrections were employed for **8**, 22, and 23a.¹³ The structures were solved by eitcric methods (SHELXS-97),¹⁴ and refined using the least-squares posited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-728174 (8), CCDC-728175 (22), CCDC-728176 (23a). These data can be obtained free of charge via [www.ccdc.cam.uk/conts/re](http://www.ccdc.cam.uk/conts/retrieving.html)[trieving.html](http://www.ccdc.cam.uk/conts/retrieving.html) (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: $+44$ 1223 336 033; or deposit@ccdc.cam.ac.uk).
- Sadabs, Program for data correction, Bruker-AXS.
- 14. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467–473.
- 15. Sheldrick, G. M.; SHELXL-97. Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.
- 16. Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Antimicrob. Agents Chemother. 1979, 16, 710–718.
- 17. Spiller, D. G.; Bray, P. G.; Hughes, R. H.; Ward, S. A.; White, M. R. Trends Parasitol. 2002, 18, 441–444.